Principles of Clinical Trials

Anna S. F. Lok, M.D., DSc (Hon), FAAASLD
Alice Lohrman Andrews Research Professor in Hepatology
Director of Clinical Hepatology
Assistant Dean for Clinical Research
University of Michigan
Ann Arbor, MI, USA
Clinical Trials

- Designed to study response to an intervention under experimental conditions
- One or multiple arms
- Uncontrolled or controlled
- Superiority or equivalence (non-inferiority)
- Open label or blinded
- Randomized trials, adaptive designs, pragmatic trials…
Why Randomized Controlled Trials (RCT)?

Patients enrolled in clinical trials can have improved short-term outcomes, even if the treatment is ineffective.
Why Randomized Controlled Trials (RCT)?

Patients enrolled in clinical trials can have improved short-term outcomes, even if the treatment is ineffective

• Potential sources of ‘benefit’
 – Enrollment of lower-risk patients with minimal comorbidities
 – Use of standardized protocols and improved supportive care
 – Greater effort to prevent or manage adverse events

• Hawthorne or placebo effect
 – Hawthorne effect: changes in physicians’ or patients’ behavior, because of being observed, resulting in improved outcomes
 – Placebo effect: benefit derived not from the treatment itself but from the patients’ expectations of benefit
What are the key elements in a randomized trial protocol?

- Background and rationale for study
- Hypotheses and aims
- Study population – inclusion and exclusion criteria
- Trial design – intervention and comparison, randomization
- Endpoints – what, when and how
- Sample size and data analysis plan
Safety and Efficacy of Magic Pill A in NASH
Introduction

• Study rationale
 – Why is this study important

• Background
 – Review literature on standard of care for the disease
 – Provide preliminary data on the intervention to be studied: in vitro, animal and human data on efficacy, safety, clinical pharmacology

• Risk/Benefit assessment
 – Known potential risks and benefits
 – Justification of potential risks, measures to minimize risks
Hypotheses

• **Sound hypotheses**
 - Is there any physiologic basis / background data to support that magic pill A would have an effect in reversing pathophysiology of NASH and/or in ameliorating NASH liver injury?
Endpoints

- **Primary** – which effect, how it will be measured and when
 - Preferably one primary endpoint, basis for concluding whether study objective is met and for sample size calculations
 - Clinically relevant, reliable test/method to measure effect
Endpoints

• **Primary** – which effect, how it will be measured and when
 • Preferably one primary endpoint, basis for concluding whether study objective is met and for sample size calculations
 • Clinically relevant, reliable test/method to measure effect

• **Secondary**
 • Provide supportive information about effect of intervention
 • Examples: efficacy at different time point or in pre-defined subsets, dose-response effect, predictors of response, safety measures, patient reported outcomes
Endpoints

- **Primary** – which effect, how it will be measured and when
 - Preferably one primary endpoint, basis for concluding whether study objective is met and for sample size calculations
 - Clinically relevant, reliable test/method to measure effect

- **Secondary**
 - Provide supportive information about effect of intervention
 - Examples: efficacy at different time point or in pre-defined subsets, dose-response effect, predictors of response, safety measures, patient reported outcomes

- **Exploratory**
 - May include clinically important events that are expected to be infrequent or hypotheses generating
Study Population

• Which patients to study?
 – Inclusion and exclusion criteria
 – Consider generalizability of results
 – Consider availability of participants
 – Which tests needed prior to enrollment
 • To confirm diagnosis and to assess baseline severity: liver biopsy, Fibroscan, MR?
 • When should those tests be done: window period before enrollment?
 • What should the test results be: minimum NAS / fibrosis score?
Inclusion Criteria

• Every participant must satisfy all criteria
• Demographics: age limit?
• Diagnosis of disease
• Staging of disease
• Informed consent
Exclusion Criteria

- All participants meeting any of the criteria must be excluded
- Other liver diseases: HBV, HCV, alcohol – how much?
- Prior treatment – bariatric surgery, liposuction?
- Concomitant medications?
- Decompensated liver disease?
- Lab criteria – blood counts, hepatic panel, creatinine, A1c, lipid panel?
- Comorbid medical conditions that might impact response, safety, compliance or life-expectancy
- Pregnancy
Recruitment and Retention

• **Source of patients** – where and how will potential participants be identified: patient registry, electronic medical records, advertising (IRB approval)

• **Strategies to meet sample size**

• **Screening log** – Patients with same condition but not enrolled. Are enrolled patients similar to those not enrolled?
Consort Diagram

1. Enrollment
 - Assessed for eligibility (n=_)
 - Excluded (n=_)
 - Not meeting inclusion criteria (n=_)
 - Declined to participate (n=_)
 - Other reasons (n=_)
 - Randomized (n=_)

2. Allocation
 - Allocated to intervention (n=_)
 - Received allocated intervention (n=_)
 - Did not receive allocated intervention (give reasons) (n=_)
 - Excluded from analysis (give reasons) (n=_)
 - Allocated to intervention (n=_)
 - Received allocated intervention (n=_)
 - Did not receive allocated intervention (give reasons) (n=_)

3. Follow-Up
 - Lost to follow-up (give reasons) (n=_)
 - Discontinued intervention (give reasons) (n=_)
 - Lost to follow-up (give reasons) (n=_)
 - Discontinued intervention (give reasons) (n=_)

4. Analysis
 - Analysed (n=_)
 - Excluded from analysis (give reasons) (n=_)
 - Analysed (n=_)
 - Excluded from analysis (give reasons) (n=_)
Trial Design – Intervention

- **Participating sites:** no., location
- **Design:** single vs. multiple arms, cross-over, adaptive, etc
- **Test treatment:** dose, route, duration, criteria for dose modification/termination
- **Control:** active treatment or placebo?
 - Is it ethical to use placebo?
 - Is it feasible to use placebo? Impact on enrollment?
 - Is it important to use placebo? Subjective vs. objective endpoint? Likelihood of spontaneous improvement? Safety assessment
 - Is blinding possible?
Randomization

- **Purpose:** to minimize imbalance in patient characteristics between groups
- **Methods:** computer generated random numbers, blocks, stratification
- **Concealment:** prevent prediction of treatment assignment resulting in selection bias
- **Timing:** after confirmation of eligibility, treatment initiation visit scheduled, and treatment ready to begin
 - Patients randomized but not started on treatment need to be included in intention-to-treat analysis
Study Assessments and Procedures

- Study visit table
- Timing of each visit and visit window: visits frequent enough to capture necessary data but not excessively burdensome
- Clinical assessments including physical exam, concomitant medications, comorbidities
- Tests and procedures: specify methods, e.g. liver steatosis by Fibroscan or MR PDFF
- Assessment of adverse events: definition, methods of assessment, management
- Questionnaires, patient reported outcomes
Study Intervention

• Study drug dispensing
• Adherence
 – To intervention: diaries, electronic monitoring, drug levels…
 – To protocol: study visits, tests
• Concomitant therapy
 – Which medications are restricted
• Rescue therapy
 – For treatment failure or for adverse events
Statistical Considerations

- Statistical hypotheses
- Sample size determination
- Populations for analyses
- Statistical analyses
 - General plan
 - Specific plan for each primary, secondary and exploratory endpoints, and safety analyses
 - Describe how missing data will be handled
 - Describe subgroup and interim analyses if applicable
Statistical Considerations

- Statistical hypotheses
- Sample size determination
- Populations for analyses
- Statistical analyses
 - General plan
 - Specific plan for each primary, secondary and exploratory endpoints, and safety analyses
 - Describe how missing data will be handled
 - Describe subgroup and interim analyses if applicable

Meet with statistician early during planning of trial not after completion of trial
Sample Size Estimate

- To maximize the chance of detecting a significant difference between treatments when there is one, to avoid false positive or false negative results

- No. of patients needed to enroll to detect a significant difference with sufficient power (>80%)

- Predicated on projected response rates to investigational treatment vs. control
 - Estimation of response need to be scientifically based and realistic

- Adjustment for drop outs

- Adjustment for interim analyses
Primary Efficacy Endpoint

• Objective, measurable, and achievable
• Define timing and method of assessment
• Improvement in NASH
 – Based on histology, MR or other tests
 – Histology
 • Central read or local read?
 • Decrease NAS or fibrosis score or both, decrease by how much or to less than what?
 • Patients with missing or inadequate biopsies will be counted as non-responders in ITT analysis
 – Non-invasive assessment: reproducibility, validity as surrogate?
Analyses of Efficacy

- **Intention to treat (ITT)**
 - Include all patients randomized, problem when drop out rate is high or different among treatment arms
 - Modified ITT – include only patients who received at least one dose

- **Per protocol / As treated**
 - Include only patients who received treatment or who received adequate dose or duration of treatment
 - Patients who were available for assessment of primary endpoint
 - More accurate assessment of efficacy when adequate dose or duration of treatment is received but over estimate treatment effect for all patients in whom treatment is intended
Regulatory / Safety / Budget Issues

- Registration of trial, e.g. clinicaltrials.gov (many journals require this)
- IRB or ethics committee approval
- Informed consent
- Adverse event reporting
- Independent Data and Safety Monitoring Board
- Budget, funding, conflict of interest

Protocol template and instructions on how to write a clinical trial protocol can be found at: